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Abstract

Introduction: Further evidence is needed to support the use of plasma amyloid β (Aβ)
biomarkers as Alzheimer’s disease prescreening tools. This study evaluated the clinical

performance and robustness of plasma Aβ42/Aβ40 for amyloid positivity prescreening.

Methods: Data were collected from 333 BioFINDER and 121 Alzheimer’s Disease

Neuroimaging Initiative study participants. Risk and predictive values versus per-

centile of plasma Aβ42/Aβ40 evaluated the actionability of plasma Aβ42/Aβ40, and
simulationsmodeled the impact of potential uncertainties andbiases. AmyloidPETwas

the brain amyloidosis reference standard.

Results: Elecsys plasmaAβ42/Aβ40 could potentially rule out amyloid pathology in pop-

ulations with low-to-moderate amyloid positivity prevalence. However, simulations

showed small measurement or pre-analytical errors in Aβ42 and/or Aβ40 causemisclas-

sifications, impacting sensitivity or specificity. Theminor fold change between amyloid

PET positive and negative cases explains the biomarkers low robustness.
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Discussion: Implementing plasma Aβ42/Aβ40 for routine clinical use may pose signifi-

cant challenges, withmisclassification risks.
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Highlights

∙ Plasma Aβ42/Aβ40 ruled out amyloid PET positivity in a setting of low amyloid-

positive prevalence.

∙ Including (pre-) analytical errors or measurement biases causedmisclassifications.

∙ Plasma Aβ42/Aβ40 had a low inherent dynamic range, independent of analytical

method.

∙ Other blood biomarkers may be easier to implement as robust prescreening tools.

1 INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative disease

associated with memory decline.1,2 The key neuropathologic features

of AD include the accumulation of amyloid β (Aβ) and phosphorylated

tau (pTau) aggregates in the form of plaques and tangles that cause

downstream neurodegeneration.1,2 Aβ plaques build up years before

symptoms emerge and, as the disease progresses, lead to memory and

functional disability.1

Amyloid positron emission tomography (PET) and cerebrospinal

fluid (CSF) biomarkers are currently used to confirm underlying amy-

loid pathology in vivo.3 However, these methods are expensive, have

limited availability, or are perceived as invasive.4 Globally, there is an

urgent unmet need for cost-effective and minimally invasive methods

to identify patients with amyloid pathology early in their disease.3,5

Plasma biomarkers are a proposed solution to prescreen patients into

clinical trials, as well as routine clinical practice, especially to helpmeet

the increased demand caused by the availability of disease-modifying

therapies.6

Multiple technologies, whether mass spectrometry or

immunoassay-based, show promising technical and clinical per-

formance when measuring the ratio of Aβ42/Aβ40 in plasma.7–10

These evaluations have been performed in retrospective studies that

minimize variability (i.e., banked samples collected under a standard-

ized protocol and measured in a single batch) without the need of

prespecifying a cutoff (for each study, the optimal cutoff was identified

after the biomarker values were available). Two questions must be

addressed to understand the value of blood-based biomarkers for AD

in clinical trials and routine better: actionability and robustness for

prospective use.

We defined the actionability of a biomarker as its ability to enable

decisions for a particular intended use. Two intended uses were con-

sidered: (1) as a cost-effective prescreening for clinical trials and (2)

as a tool to improve diagnostic work-up for AD in clinical routine. The

performance measures to evaluate a biomarker should support the

intended use(s). Many studies report receiver operating characteristic

area under the curve (ROC-AUC),whichmeasures discrimination but is

not directly interpretable for a specific intended use.11,12 Amore infor-

mative performance evaluation tool for assessing actionability is the

predictiveness curve (seeMethods section).

Robustness is the second critical challenge because prospective

biomarker measurements to enroll patients for a clinical trial, or for

use in clinical routine, will inevitably come with higher variability com-

pared with retrospective measurements of banked samples,13,14 and

they require a prespecified cutoff. Biologic variability (e.g., fluctuations

of biomarker concentrations within or between days), pre-analytical

variability (e.g., differences in sample handling), and analytical vari-

ability (e.g., different laboratories, instruments, reagent lots) can only

be standardized and controlled to a certain extent.15,16 Ideally, low

levels of variability should not impact the clinical performance of a

biomarker. As in other medical fields, every biomarker needs to be

assessed based on its total allowable error (TAE) in measurements

that can be tolerated without invalidating the medical usefulness of

the analytical result.13 The TAE is composed of both random and

systematic error. A prospective, real-world evaluation in a popula-

tion that reflects the intended use of the biomarker, and all possible

components of variability, is not always feasible, especially in proof-of-

concept phases. However, there are indirect approaches to assessing

biomarker robustness, basedon simulations. Requirements for theTAE

(due to all sources) should be derived based on its impact on clinical

performance.13,17

We aimed to evaluate the clinical performance and robustness of

plasma Aβ42/Aβ40 as a prescreening tool for AD clinical trials and in

routine clinical practice. To better illustrate the potential robustness

issue for plasma Aβ42/Aβ40, we compared the impact of measure-

ment error on plasma Aβ42/Aβ40 with two established biomarker

ratios in CSF (Aβ42/Aβ40 and pTau181/Aβ42), using data from the

Swedish BioFINDER study. The Foundation for the National Insti-

tutes of Health (FNIH) plasma platform comparison study, using

samples from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
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RABE ET AL. 1395

RESEARCH INCONTEXT

1. Systematic Review: The authors gathered data from 333

participants from the BioFINDER study, and 121 partic-

ipants from the Alzheimer’s Disease Neuroimaging Ini-

tiative studies, which were analyzed and complemented

with simulation studies.

2. Interpretation: Whereas plasma Aβ42/Aβ40 showed

potential for ruling out amyloid positivity in a setting

of low prevalence of amyloid positivity, it lacked fea-

sibility in moderate prevalence settings. A high risk

of misclassification occurred with the introduction of

small measurement or pre-analytic errors. This lack of

robustness is caused by the narrow dynamic range of

plasma Aβ42/Aβ40, which is inherent to the biomarker

and independent of measurement technology.

3. Future Directions: These findings demonstrate signif-

icant challenges implementing plasma Aβ42/Aβ40 as a

robust biomarker for either clinical trials or routine clin-

ical practice. Other promising blood biomarkers with

higher robustness will likely prove easier to implement in

the clinic.

study, was used to compare different plasma Aβ42/Aβ40 measurement

technologies.10

2 METHODS

2.1 BioFINDER subset

The prospective, longitudinal BioFINDER study included consecu-

tively recruited participants from Sweden between 2009 and 2015

(NCT01208675). Data from the subset of patients (n = 333) classified

as either cognitively unimpaired (CU), with subjective cognitive decline

(SCD), or mild cognitive impairment (MCI).18 All patients in this subset

have plasma and CSF biomarker measurements, as well as PET scans

available to allow for a comparison of all biomarkers on the same data

set. See Table S1 for BioFINDER demographics by visual read PET sta-

tus and overall status. Details on study design and sample collection

have been published previously.9

2.2 ADNI subset

ADNI plasma biomarker data from 130 samples from 121 unique

patients were downloaded on June 27, 2021 from the Laboratory of

NeuroImaging.19 Table S2 for ADNI FNIH subset demographics by PET

status and overall status.

2.3 Biomarker assays

BioFINDER Elecsys measurements were performed on a cobas e 601

analyzer using the prototype Elecsys Aβ42 and Aβ40 immunoassays

for plasma (modified improved version compared with the previously

published version9) and CSF Aβ42, Aβ40, and pTau181 as described

previously.20 Cutoffs for CSF pTau181/Aβ42 and CSF Aβ42/Aβ40 were
0.02220 and 0.059,9 respectively.

Plasma measurements in ADNI were performed using three

immunoassays (Elecsys, Quanterix, ADx) and threemass spectrometry

(Washington University, Shimadzu, University of Gothenburg) meth-

ods, with a different version and standardization for the Elecsys assays

comparedwith BioFINDER (details in SupplementaryMaterials).21

2.4 Reference: Amyloid PET

Amyloid PETwas used as a common reference for all markers (CSF and

plasma). For BioFINDER, Aβ positivity was determined by flutemeta-

mol PET visual read as previously described.20 The ADNI study used

florbetapir PET amyloid images; amyloid positivitywas defined as stan-

dardized uptake value ratio ≥1.11, since no visual read was available

for these scans.10

2.5 Clinical performance measures

The most commonly reported performance measures when compar-

ing a quantitatively measured biomarker with a binary reference are

ROC curves and AUC, as well as sensitivity and specificity of selected

cutoffs.11,12 However, other measures are more relevant from a clini-

cal standpoint22: positive predictive value (PPV), the probability that a

patient is indeed PET+ if the biomarker test is positive (i.e., PET+ rate

in biomarker test+) and the negative predictive value (NPV), the prob-

ability that a patient is indeed PET− if the biomarker test is negative

(i.e., PET− rate in biomarker test−). Both PPV and NPV depend on the

prevalence in the population. These are cumulative probabilities and

refer to a group of patients that are belowor above a cutoff. The proba-

bility of being positive (“risk”) at a specific biomarker concentration can

beestimated,12 and ismorepowerful for clinical decision-making for an

individual patient.12,22 Based on the risk curve, meaningful cutoffs for

risk categories for further guidance can be derived.

Population performance, meaning how frequently various risks

occur, is important to understand when evaluating a biomarker’s

usefulness.12 A biomarker that determines extreme risks in a larger

fraction of the intended use population will have more utility.12 The

predictiveness curve is a useful tool introduced by Pepe et al.12

that evaluates the risk distribution by plotting the risk versus the

biomarker percentile.

When evaluating a biomarker as a prescreener for a clinical trial,

PPVandNPVdescribe the cumulative risk in thepopulations screened-

out and enrolled. We propose an integrated risk-profile plot show-

ing risk and cumulative risk versus the percentile of the biomarker
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1396 RABE ET AL.

distribution (i.e., proportion of patients below threshold), which con-

tains all information necessary to assess the utility of a biomarker (see

Figure S1 and Supplementary Materials for details on interpretation,

estimation, and implementation).

2.6 Robustness

The TAE is a quality requirement that sets a limit for combined

imprecision (random error) and bias (systematic error) that are toler-

able in a single measurement or single test result to ensure clinical

usefulness.13,23 Imprecision (measured as coefficient of variation [CV])

and bias are often combined to a total error (TE) using TE = bias

+ 1.65*CV, but quality goals need to be derived for both bias and

TE.17,23 Simulation studies (indirect methods) can help to understand

the impact of potential measurement uncertainty on clinical outcomes

and to derive the TAE and bias goals.13

If a cutoff or the associated risk based on a biomarker concentration

is determined under certain conditions (e.g., a specific lab, reagent lot,

or pre-analytical sample handling), any change in condition that leads

to different concentrations needs to be treated as bias. Bias can have

a direct and large impact on clinical decisions as they move a group of

patients systematically above or belowa threshold.17 While the impact

of bias can be easily investigated by simply shifting the distribution,

simulation studies can combine bias and imprecision (see details in the

SupplementaryMaterials).

3 RESULTS

3.1 BioFINDER clinical performance

Concordance between plasma Aβ42/Aβ40 and amyloid PET (AUC

0.793), CSF Aβ42/Aβ40 (AUC 0.825), and CSF pTau/Aβ42 (AUC

0.813) remained meaningfully lower than concordance between CSF

(Aβ42/Aβ40 or pTau/Aβ42) and PET (AUC 0.942 and 0.956).

Figure 1A shows the estimated risk of being PET+ for each plasma

Aβ42/Aβ40 value in the study population with the observed prevalence
of ∼ 30% PET positivity. For high plasma Aβ42/Aβ40 levels, the risk of

being PET+ was extremely low (i.e., close to zero; note that the x-axis

is reversed) and very high risks were not observed (i.e., the highest risk

estimate does not exceed 60%).

Figure 1B illustrates the risk versus the percentile of plasma

Aβ42/Aβ40 levels in the population (note the x-axis shows percentile

with respect to proportion in non-pathological direction), that is, the

distribution of risk that describes the utility of a biomarker for a popu-

lation (predictiveness curve). Very low risks occurred in about 25% of

the population (25% highest plasma Aβ42/Aβ40 levels).
The estimated risk depends on the prevalence in the population;

Figure S2 shows how the risk curve would change with a different

prevalence. These curves assume constant sensitivity and specificity,

that is, the conditional distribution of plasma Aβ42/Aβ40 per given PET

(A)

(B)

F IGURE 1 Estimated risk of being amyloid PET+ versus (A)
plasma Aβ42/Aβ40 valuea and (B) percentile of plasma Aβ42/Aβ40b.
Aβ, amyloid beta; PET, positron emission tomography.
aThe x-axis is reversed into non-pathologic direction (high to low).
bThe x-axis shows the percentile with respect to proportion in
non-pathologic direction.

status is similar, only the prevalence changes. While this is a simpli-

fication and makes strong assumptions, Figure S3 provides evidence

that this may be applicable for plasma Aβ42/Aβ40 across the observed
disease stages of CU, SCD, andMCI.

3.2 Evaluation of plasma Aβ42/Aβ40 as a
prescreening tool for a clinical trial

When considering the specific intended use of evaluating plasma

Aβ42/Aβ40 as a prescreening tool for a secondary prevention trial

in asymptomatic Aβ+ participants, we assumed the amyloid-positive

prevalence will be around 15% when using amyloid PET visual read.24

Figure 2A shows the risk and the cumulative risk estimates (PPV

and 1−NPV) to determine the utility for this intended use. The

1−NPV curve was close to zero for almost 50% of the population,

meaning that one could screen out a large proportion of true amyloid-

negative individuals without falsely screening out any positives. The

PPV, 1−NPV, and percentage screen-out can be directly translated

into other trial characteristics, such as total number of patients need-

ing to be screened and number of downstream assessments avoided

(e.g., PET/CSF) (Figure 2B). For example, if 45% of the population is

screened out, the rate of falsely screened-out amyloid-positives in

the screen-out population is 2% (1−NPV), and the amyloid-positive

prevalence increases from 15% without prescreening to 25% in the

screen-in population (PPV). That translates into needing to prescreen
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RABE ET AL. 1397

(A) (B)

F IGURE 2 Plasma Aβ42/Aβ40. (A) Integrated risk-profile plot with an assumed prevalence of 15% showing the estimated probability of being
PET+ (risk) in black, PPV in red, and 1-NPV in blue for the percentiles of the plasma Aβ42/Aβ40 distribution (reversed).a The percentage would
correspond to the% screen-out rate. (B) Number needed to screen (total and PET). Aβ, amyloid beta; NPV, negative predictive value; PET, positron
emission tomography; PPV, positive predictive value.
aThe x-axis shows the percentile with respect to proportion in a non-pathologic direction.

7% more participants (to compensate for the falsely screened-out

true positives) but reducing the number of PET/CSF assessments

by 40%. Figure S4 shows the integrated risk-profile plot of a direct

comparison between plasma Aβ42/Aβ40, CSF Aβ42/Aβ40, and CSF

pTau/Aβ42.

3.3 BioFINDER robustness

A robust biomarker is not sensitive to smallmeasurement errors. In the

following descriptions, we used cutoffs for a more intuitive illustration

of robustness issues; however, the reader should note that the same

logic applies without using a cutoff, as there is clinical performance

(risk) associated with each biomarker concentration. Figure 3A shows

that adding imprecision of 10% CV led to different rates of reclas-

sification for the three biomarker ratios, illustrating how the same

level of imprecision can impact the performance of biomarkers differ-

ently (26% for plasma Aβ42/Aβ40, 4% for CSF Aβ42/Aβ40, and 2% for

pTau/Aβ42).
Figure 3B illustrates that the proportion of data points close to

the cutoff is different for plasma Aβ42/Aβ40, CSF Aβ42/Aβ40, and CSF

pTau/Aβ42. This was not only driven by better discrimination – while

the two CSF ratios had similar clinical discrimination performance

(classifying PET+ and PET−), the data points for CSF Aβ42/Aβ40 were
closer to the cutoff (dotted line) than pTau/Aβ42. This is more extreme

for plasma Aβ42/Aβ40 where the data points are even closer to the

cutoff.

Figure 3C on the left compares the range between the three

biomarker ratios by dividing each data point by the respective cutoff;

2.0 on the x-axis indicated that a data point was twice as large as the

cutoff. For plasmaAβ42/Aβ40, thewhole distribution had a very narrow
range around the cutoff that can already be anticipated by looking at

the percentage difference (or fold change) between the means of the

two distributions, which is ∼ 200% for CSF pTau/Aβ42, ∼ 100% for CSF

Aβ42/Aβ40, and∼ 10% for plasma Aβ42/Aβ40.
Figure 3C on the right illustrates that a 22% shift (e.g., caused by a

10% shift in opposite directions for the ratio numerator and denomina-

tor) moves almost all patients above the cutoff for plasma, meaning all

patients are classified as negative and the test loses all clinical perfor-

mance. In contrast, this had a moderate impact on CSF Aβ42/Aβ40 but
very little impact on CSF pTau/Aβ42, which is why it is considered the

biomarker combination with the highest robustness.

For a systematic evaluation, we simulated the impact of impreci-

sion and bias on patient classification. Figure 4 shows how sensitivity

and specificity change for varying imprecision (different red and blue

scales) and for added bias of the ratio as the result of different

biases from the numerator and denominator of the ratio. For plasma

Aβ42/Aβ40, very small individual bias resulted in a dramatic loss of

sensitivity or specificity. For example, with an individual bias of 2%

(ratio bias 4%) and no added imprecision, the sensitivity dropped from

83% to 67%; with individual bias of 4% (ratio bias 8.3%), the sensitiv-

ity dropped further down to 40%, reaching almost 0% with individual

biases of 10% (ratio bias 22%). While the exact amount of allowable

bias and imprecision (both components of theTAE) dependson the spe-

cific cutoff and intended use, the steep drop in performance indicates

that analytical performance requirements (and requirements for other

sources of variability, e.g., preanalytical sample handling)would have to

be extremely strict for any intended use. As an example, the intended

use of prescreening in clinical trials would require an allowable bias of

<2% to meet performance acceptance criteria of high sensitivity (oth-

erwise the total number to screen increasesdrastically). In contrast, the

curves for bothCSF ratios aremuch less steep and amoderate increase

in imprecision has almost no impact – indicating that it only affects

patients in an area around the cutoff where there is naturally a more

mixed population of positives and negatives; reclassification of those

does not change the clinical performance.
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1398 RABE ET AL.

(A)

(B)

(C)

F IGURE 3 (A) Illustration of CV: scatterplots of ratio biomarkers with andwithout 10% added noise (CV). (B) Scatterplots of individual
biomarkers that form a ratio to illustrate proximity to cutoff. (C) Densities of ratio biomarkers with andwithout 10% bias added. Aβ, amyloid beta;
CSF, cerebrospinal fluid; CV, coefficient of variation; r, correlation coefficient; PET, positron emission tomography; pTau, phosphorylated tau; recl,
reclassification rate at a specific cutoff.
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RABE ET AL. 1399

F IGURE 4 Impact on sensitivity (red scales); specificity (blue scales) with simulated imprecision (color scales); bias (x-axis) for the three
biomarker ratios. Aβ, amyloid beta; CSF, cerebrospinal fluid; CV, coefficient of variation; pTau, phosphorylated tau.

3.4 Platform comparison (ADNI FNIH)

The FNIH compared different plasma Aβ42/Aβ40 measurement tech-

nologies using a small subset of well-characterized samples from the

ADNI study. This allowed us to analyze different assays in a head-

to-head comparison to evaluate if the narrow range that is causing

issues with robustness is specific to a measurement technology (e.g.,

immunoassay vs mass spectrometry), or if it applies to all methods.

While somemass spectrometrymethods showedbetter discrimination

performance (Figure 5 [left]), all methods suffered from the same nar-

row range and low fold change suggesting that similar challenges with

robustness, as described for the Elecsys assays, will also apply to other

methods (Figure 5 [right]).

4 DISCUSSION

Our results showed lower concordance between plasma Aβ42/Aβ40
and amyloid PET, CSF Aβ42/Aβ40, and CSF pTau/Aβ42 than that seen

between CSF Aβ42/Aβ40 or pTau/Aβ42 and PET. This applied to other

plasma Aβ42/Aβ40 detection technologies as well, even though some

mass spectrometry methods show higher AUC than Elecsys.10 While

CSF and PET are often used interchangeably,20 the lower concor-

dance for plasma Aβ42/Aβ40 indicates that the intended use should be
carefully evaluated. A marker with lower concordance can still be a

promising candidate as a prescreening test, and we showed that Elec-

sys plasma Aβ42/Aβ40 could potentially be used to rule out amyloid

pathology in a low prevalence setting. However, because very high-risk

estimates are not reached (e.g., not exceeding 40% with a prevalence

assumption of 15%), ruling in patients only based on plasma Aβ42/Aβ40
does not seem feasible. The risk information might still be useful for

triaging patients (e.g., closely monitoring higher-risk individuals).25,26

A major limitation of this study is that the evaluation of clinical per-

formance is simplified (i.e., it is performed in a pooled population of

CU, SCD, and MCI due to sample size limitations; relies on several

assumption; and does not take into account other important factors

such as age, Apolipoprotein E4 [ApoE4], and race [available data were

predominantly from a Caucasian population]). For example, ApoE4 is

a known risk factor for amyloid positivity, and risk estimates based on

plasma Aβ42/Aβ40 might not be well calibrated without adjusting for

ApoE4 status. In clinical routine, decision making rarely relies on one

single test or assessment; more extensive evaluations in representa-

tive intended-use populations, larger studies, and further assessment

of the value of combining plasma Aβ42/Aβ40 with other factors are

needed.When assessing the robustness of plasmaAβ42/Aβ40, our anal-
ysis showed that there is a very high risk of misclassifying patients

when only small measurement or pre-analytical errors apply. This is

caused by the small difference of plasma Aβ42/Aβ40 levels between

amyloid-positive and -negative individuals (∼ 10%). Therefore, a small

measurement error of < 5% can reduce the clinical performance of

plasma Aβ42/Aβ40 to a level where the biomarker would no longer be

clinically useful. For a robust and scalable biomarker (multiple labs,

instruments, etc.), small bias and imprecision should not result in dras-

tic changes in the classification of patients; controlling for a small

amount of error is challenging in practice, and factors like pre-analytics

can only be controlled to a certain extent.

Biases may or may not be correlated between the two markers

that form a ratio. In case of Aβ42 and Aβ40, biologic and pre-analytical

effects are likely tobepositively correlated as it often affects bothAβ42
andAβ40 but probably not to the same extent.16 Here, a ratio is helpful,

but does not necessarily cancel out all errors. One key pre-analytical

factor that has been shown to cause bias with plasma Aβ42/Aβ40 is the
time to centrifugation of whole blood when stored at room tempera-

ture, which causes Aβ42/Aβ40 to decrease if not done within 3 to 6 h
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F IGURE 5 ADNI FNIH platform comparison of plasma Aβ42/Aβ40 assays. Left panel shows discrimination performance for all markers (AUCs).
Right panel shows densities by PET+ and PET–, as well as difference inmeans (PET+ and PET–). Aβ, amyloid beta; AUC, area under the curve;MS,
mass spectrometry; NPV, negative predictive value; PET, positron emission tomography; SUVR, standardized uptake value ratio.
aBoth ADx andQuanterix used Simoa immunoassays for measurement of Aβ42/Aβ40.

after blood collection.15,16 This source of error may partially apply in

clinical routine where sample handling is not always well standardized

compared with a clinical trial. Importantly, bias due to pre-analytical

sample handling cannot be controlled by any quality control concept of

any measurement technology, since control samples are not affected

by it.

We showed that the low dynamic range of plasma Aβ42/Aβ40 is not
dependent on measurement technology but is inherent in the proper-

ties of plasma Aβ42/Aβ40 itself. Hence, all plasma Aβ42/Aβ40 methods

should be carefully assessed for allowable bias and total error for

each intended use, to ensure that the risk of misclassifying patients is

appropriately controlled for.

A limitation of this study is that the findings have not been derived

from a prospective study that incorporates all possible sources of

error in the same study where clinical performance is evaluated (e.g., a

prospective setting withmultiple labs and assay reagent lots, real-time

measurements without run-in batches, and pre-analytical conditions

as they would apply in clinical routine). All studies so far have been

performed retrospectively andwithout aprespecified cutoff, oftennor-

malizing for batch effects,7–10,27 whichminimizes variability compared

with the expected variability when using these biomarkers prospec-

tively in clinical trials or routine. Prospective validation under routine

conditions is the biggest gap in establishing the clinical utility and scal-

ability (multiple labs, etc.) of plasma Aβ42/Aβ40 methods, given the

anticipated challenges described.

In conclusion, the narrow range of plasma Aβ42/Aβ40 and the

small difference between amyloid-positive and -negative subjects

results in a very low TAE, which may pose challenges in robustly

implementing this biomarker in clinical trials and clinical routine.

More research on clinical utility and robustness of blood-based

biomarkers in AD in well-designed prospective experiments with

prespecified cutoffs is needed. Properties of other promising biomark-

ers like plasma pTau28 and glial fibrillary acidic protein29 should

be evaluated as targets for prescreening tools that can be imple-

mented robustly in clinical trials and clinical routine at a large

scale.
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